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Abstract

All over the world, canine breeding individuals are required to have their genetic
disposition to hip dysplasia rated. These evaluations are standardized by organi-
zations such as World Canine Organization (FCI) who rate the health of hip on a
scale from A to E. Given the size of our acquired hip dysplasia dataset, we utilize
transfer learning and feature extraction of x-ray images in order to develop a CNN
capable of hip dysplasia classification. To accomplish this, we test if classification
of grayscale x-rays (one-channel) converted into RGB format (three-channel) can
take advantage of pre-trained models on a RGB dataset. First, we pre-process the
dataset and transform the x-rays. Then, we train a network for feature extraction
on a dataset of annotated hips by using a pre-trained model on ImageNet. Finally,
we perform different experiments to optimize the classification accuracy of a pre-
trained classifier. In our feature extraction, we obtain a mAP of 1.00 in Pascal VOC
format and an average IoU of 0.92. Based on an unbalanced dataset of our feature
extractions, consisting of 7,444 observations, a f1-score of 0.71 is obtained on five-
class classification on the test set. Further, we show that by separating the dataset
in subsets of [A, B, C] and [D, E], it is possible to obtain a f1-score of 0.96 on the
test set. Thus, it is concluded that transfer learning with CNN models, trained on
RGB image datasets, can be successfully applied to grayscale x-rays of hip dysplasia
for classification.

2



Acknowledgements

I would like to extend special thanks to Helle Friis Proschowsky from Dansk Kennel
Klub (DKK) for allowing access to the data and taking the time to explain the
challenges within canine hip dysplasia. Through Proschowsky, I was introduced to
Dorte Hald Nielsen, lecturer at University of Copenhagen (KU). Hald Nielsen is
responsible for hip dysplasia diagnostics and has been evaluating thousands of cases
over the years. I would like to thank Hald Nielsen for her patience in explaining the
HD evaluation process. Without her evaluations, the thesis work would not have
been possible. In fact, since all the training data is labelled by Hald Nielsen, the
model is in effect aiming to replicate her evaluation process. I also want to thank
Fintan McEvoy, Professor of Veterinary Imaging in the Department of Veterinary
Clinical and Animal Sciences. McEvoy’s understanding and interest in the inter-
section of computer vision and veterinary sciences has been critical in pushing the
project forward. Not only did McEvoy transfer all the raw image data, he also pro-
vided guidance with regards to feature extraction and how to work with DICOM
files. Lastly, I would like to thank my supervisor, Jes Frellsen, Associate Professor
at the Department of Computer Science of IT University of Copenhagen, for his
support when the project faced challenges.

3



Preface

As a Msc Design-track student in Software Development and Technology with a B.Sc.
degree in Economics, I have 1.5 years of formal education in computer science prior
to the thesis work. My electives have been focused on data science and hence for my
thesis I opted for a project in which I could extend my experience with traditional
machine learning techniques such as clustering, decision trees, etc. into deep learning
applications. During the thesis project, an object detector and classifier for analysis
of canine hip dysplasia were developed in python. The object detector is able to
detect canine femoral heads, the highest part of the thigh bone, based on x-ray
images from 186 different dog breeds. In order to train the object detector, a custom
dataset was generated by semi automating the annotation process. Based on the
hip extraction, an image classifier was subsequently developed to classify the hip.
Both models take advantage of transfer learning and neural network architectures
that have been proven to perform well in other object detection and classification
tasks.
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1 Introduction

Hip dysplasia (HD) is a common health concern for dogs worldwide. The condition
is heritable, and therefore national canine breeding organizations evaluate the hip
condition of breeding individuals. These evaluations have been standardized among
countries, with the most commonly used evaluation approach based on grayscale x-
ray images. Although the evaluation process is standardized, there is still a debate
among national breeding organizations about the extent to which the standard is
upheld. With an accurate classifier, however, it will be possible to objectively review
thousands of HD evaluations from different breeding organizations and detect po-
tential biases. Supervised models in computer vision have recently facilitated many
breakthroughs within the medical field. However, in order for the supervised models
to perform on par with human experts, lots of labeled data are required. In this
thesis project, an unbalanced dataset of almost 21 thousand grayscale observations,
before preprocessing, is gathered for classification. Given the size of the dataset, we
will explore if transfer learning on pre-trained red, green and blue (RGB) images
from ImageNet can be applied to grayscale medical images. The scope of the the-
sis includes image preprocessing and implementing the CNN architecture. To limit
noise, areas of interest will be extracted from the canine x-rays before classification.
The provided datasets contain canine x-ray images and evaluations that the Dan-
ish Kennel Klub (DKK) has contracted to experts from University of Copenhagen
(KU) between 2012 and 2017. The x-ray images are in DICOM format, which will
be converted and standardized for the neural network architecture.

1.1 Methodology

The methodology of the thesis can be divided into two parts: Exploring the prob-
lem domain of HD and researching the field of computer vision. For the problem
domain, information about HD has mainly been collected through on-site com-
munication with Lecturer Dorte Hald Nielsen and Professor Fintan McEvoy from
University of Copenhagen. The main objective was to understand how the evalua-
tions were conducted and identify potential bias and issues within the dataset. For
the field of computer science, information has been collected via state of the art
analysis presented in research papers and blog posts. This approach was used to
take advantage of the latest research from technology companies such as Microsoft,
Google, Facebook, and Baidu, as well as leading academic research institutions.
From this analysis, it was discovered that the effectiveness of transfer learning on
RGB images seldom was described in relation to medical grayscale images, hence
this approach was explored. In order to determine the best suited deep learning im-
plementations for the thesis, their effectiveness and complexity were assessed based
on their performance on public image datasets. As a foundation to understand the
architectures, a general understanding of neural networks was obtained from online
literature. Among the different object detection models, YOLO v2 was chosen. In
order to implement the object detector, a dataset of annotated images was gener-
ated and customized to the architecture of the object detector. The results from the
object detector were subsequently used in various classification experiments with
the classifier model known as ResNet-152.
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1.2 Datasets

As explained in the introduction, the datasets used in this thesis includes medical
x-ray images in DICOM format from KU and medical evaluation scores, in a csv file,
from Danish Kennel Klub. Both databases cover the evaluations conducted between
2012 and 2017 with an average of 3,483 per year (totaling 20,898 evaluations).

DKK Dataset

In the DKK database, the most important attribute is the hip evaluation scores
- ranging from A to E - of the left and right hip. The final score per evaluation
is based on the worst score of the two hips. Depending on the breed, a different
threshold score is required in order for the dog to be approved for breeding. That
said, the evaluation criteria is the same across breeds (Hald Nielsen pers. comm.).
The evaluation scores from A to E should be interpreted the following way.

• A: Excellent hip

• B: Few signs of concern

• C: Mildly dysplasia form

• D: Moderate dysplasia form

• E: Severe dysplasia form

Given the goal of developing a classifier based on the results of the object de-
tector, it is imperative to analyze the dataset distribution across the different hip
scores. If for example there are very few instances of B observations, it can be
difficult to train a robust neural network. In fact, the model might learn that it
is a bad idea to predict B purely based on probabilities as opposed to learning a
proxy for the evaluation procedure. The risk of working with unbalanced datasets
can to some extent be mitigated by adjusting the weights of the classes in the loss
function of the model, but is still not an ideal situation. Below is the summarized
distribution of the hip scores in the dataset before preprocessing:

• A: 70 percent

• B: 14 percent

• C: 9 percent

• D: 5 percent

• E: 2 percent

From the distribution above, it is evident that there is a clear skew toward hips
classified as ’A and B’ which accounts for 84 percent, compared to ’C, D and E’ which
accounts for just 16 percent. Outside of hip evaluations, the DKK database also
provides a strong data-foundation to investigate the heritability of the hip condition
(breed, mother’s score, father’s score, etc.). Here is an overview of all the attributes
included in the DKK dataset:
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Table 1: Description of Attributes from DKK Database

Attribute Name Description
Regnr number referencing to country region
Idnummer unique id given to each dog
Race specific breed of the dog
Navn name of the dog
RontgenDato date that the image was taken
Type hip or elbow evaluation
Sagsnummer the case number
H the score for the right hip
V the score for the left hip
Stat worst score of the two hips (the final

score)
Kvalitet the score for the quality of the image
Position score on how symmetric the dog is

placed
Far name of the father
St hip score of the father
Mor name of the mother
St hip score of the mother
KU if evaluation was made by KU
Udenlandsk if a foreign evaluator was used (only

when an evaluation is appealed)

KU Dataset

Through a database extraction at KU, image files totalling 192 GB were collected.
A csv dataset gathered from the meta-data contained in the DICOM images was
generated by running a custom python script that extracted the meta-data from the
individual images. Since DICOM contains a standardized list of meta-data, of which
many are not relevant to this study, the script only extracted relevant meta-data for
the thesis-work:

• Filename

• Width of the image

• Height of the image

• PatientID

• Accession Number (equaling to sagsnummer in the DKK database)

The two databases are linked together with two different unique ids: Accession
number (from KU dataset) and sagsnummer (from DKK dataset) and patientID
(from KU dataset) and idnummer (from DKK dataset). The patientId is a 15 digit
long id that uniquely identifies every dog as well as the country that it is from.
An analogy to this would be our passport codes. The reasoning behind using the
patientID as a unique identifier is the fact that dogs only are evaluated for their
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breeding potential once. In the rare exceptions, in which the results are appealed,
the new evaluation will overwrite the old in the DKK database and the x-ray will
be distributed to another HD expert in Scandinavia to avoid an evaluation by the
same evaluator.

2 Canine Problem Domain

As the thesis is conducted in computer science, it is not expected that the reader
will have an understanding of the domain of canine science. This chapter seeks to
give the reader an understanding of the importance of HD and how the evaluations
are conducted. This will serve as a foundation for assessing the rationale behind the
implementation of an object detector and classifier further in the report, as well as
understanding the limitations of the dataset. The information from this chapter has
been obtained from conversations with Proschowsky from DKK and Hald Nielsen
and McEvoy from KU.

HD is a genetic condition in which the head of the thigh bone does not fit with
the hip socket. Dogs with HD often have difficulties with standing up or have issues
with walking straight on their back legs. In addition to heritage, environmental
factors such as food and lifestyle are also important factors to consider. To limit the
risk of inheriting HD, Federation Cynologique Internationale (FCI), World Canine
Organization in English, has created global standards for HD evaluations. FCI is the
largest organization that standardizes HD screenings, however, there are also alter-
native HD schemes including Orthopedic Foundation for Animals (OFA) program
and Pennsylvania Hip Improvement Program (PennHIP) [1]. For the scope of this
thesis, these programs will not be considered as the foundation of their evaluation
approach is different. Instead, we will first aim to understand the rationale used
for evaluating our dataset. Of the 360 canine breeds that FCI acknowledges [2], 70
breeds are mandatory to have HD screening in order to be registered in the national
breeding registry. Further, 17 breeds are recommended screening (Proschowsky pers.
comm.). In general, if both parents receive an approved HD score, the offspring will
be registered by the national canine club. The registration is made in a national
centralized database that provides the genetic history and proof of health of the
parents.
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Figure 1: The image shows how a HD x-ray is taken. Image from Hald Nielsen.

In figure 1, a dog, in anesthesia, is placed under the x-ray machine to prepare
it for the HD scan 1. Anesthesia ensures that the dog is relaxed and the hips can
be placed in the correct position. In Denmark, dogs that are screened for HD often
also have other joints such as elbows and shoulders checked. However, this is not a
requirement on the part of FCI, and therefore is solely a decision made on behalf of
DKK. That said it explains why miss-labeled elbow evaluations did appear in the
database extractions of HD evaluations. Of the 3.483 HD evaluations (on average)
made yearly in Denmark, some breeds are over-represented (see table 2). However,
since the evaluations are made on the same criteria, no matter the type of breed,
the evaluations can be used jointly to train a classifier. From table 2 it is clear
that certain breeds are more disposed to HD; For example 13.8 percent of the breed
Berner sennenhund received an evaluation of D or E, as opposed to only 4.3 percent
of Golden retriever received an evaluation of D or E (see table 2).

Table 2: Overview of HD evaluations of the most frequent breeds. Numbers presented are
averages from 2013 to 2016.

Breed Numbers % evaluated * A in % B in % C in % D in % E in %

Labrador 567 24.5 80.1 8.3 6.9 3.5 1.2
Schaeferhund 464 27.6 64 17 10.8 6.5 1.7
Golden retriever 320 29.3 67.5 18 10 3.4 0.9
Berner sennenhund 123 55.9 63.4 9.8 11.4 11.4 2.4
Ruhaaret hoensehund 121 24.6 74.4 12.4 4.1 4.1 0
Border collie 115 38.9 73.9 5.2 3.5 3.5 1.7
Rottweiler 111 29.2 70.3 10.8 9 9 0
Broholmer 72 52.9 65.3 11.1 9.7 9.7 0

* The percentage evaluated refers to how many of the registered dogs of the given
breed also has been evaluated for HD.
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In 2016, a joint study of KU and DKK aimed to evaluate whether screening
for HD helped improve the genetic base by analyzing several generations of the
Schaeferhund breed (Proschowsky pers. comm.). The study found that evaluations
have generally improved year over year as the ratings of D’s and E’s have decreased
(see figure 2).

Figure 2: HD evaluations of Schaeferhund from 2007 to 2014. Graph provided by DKK

2.1 Hip Evaluation Process

With the intention of building a classifier, it is useful to understand how the x-ray
images are collected and evaluated. Not only does this provide a fundamental un-
derstanding to some of the challenges in the pre-processing step, it also provides
insights about the optimal training input of the classifier. Based on information
from Hald Nielsen, the following step-by-step description of the evaluation process
was provided. First, once dog-owners decide to have their bitches (female dogs) or
male dogs approved for breeding, they need to take an x-ray at a veterinary clinic. In
order to capture the x-rays, every veterinarian needs to get a certification teaching
them the correct positioning during the scan. The certificate ensures a standardized
way of capturing the x-rays and hence a fair way of evaluating HD. In relation to
machine learning, this is an important characteristic of the dataset as standardized
data make it easier for a model to generalize. The intuition is that standardized data
has less noise, thereby making it easier for the model to detect the relevant patterns.

After taking the x-rays, the veterinarians will send the images to the Veterinary
Imaging Department of Veterinary Clinical Science at University of Copenhagen
(Hald Nielsen pers. comm.). This part of the analysis is contracted out by the
Danish Kennel Klub (DKK). Upon evaluating for HD, it is first necessary that the
positioning of the dog is symmetric and the legs are parallel. If the legs are not
symmetric and parallel, the hip bone inside the hip socket will rotate and make it
challenging to properly analyze (Hald Nielsen pers. comm.). Figure 3 shows a HD
x-ray scan in which the dog has parallel legs.
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Figure 3: X-ray of hip region from dog positioned with symmetrical pelvis and parallel hind
legs. This represents optimal condition for HD evaluation. ’R’ annotates the right side.
Image from DICOM file.

Hald Nielsen, who has conducted lectures in HD evaluations, described the tech-
nical evaluation procedure of HD as follows:

1. First, we define the center of the femoral head of each hip bones by using
a transparent sheet of plastic with concentric rings engraved. The following
angles should be depicted: 80, 90, 100, and 105 degrees respectively as shown
in figure 4. The center of the femoral head, the highest part of the thigh bone,
is defined by the arc of the dorsal and medial circular sectors respectively.

2. Then we localize the intersection between the cranial and the dorsal acetabular
edge which is called the cranial effective acetabular rim (see figure 5).

3. Lastly, we determine the Norberg angle formed by a line connecting the cra-
nial effective acetabular rim and the center of the femoral head and the line
connecting the centers of the femoral heads (see figure 4).

Figure 4: Defining the Norberg angle of
a normal hip

Figure 5: Overview of the technical terms
of the hip bone

Figure 6: Illustrations depicting the evaluation of HD. Images provided by Hald Nielsen

The smaller the Norberg angle, the less encapsulated the femoral head is and the
more severe the HD is. For a hip to be classified A or B, the angle should be around
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105 degrees. In figure 7, we see different grades of hip health. In addition to the
Norberg angle, other radiographic findings are also taken into account that are less
well defined and can vary based on what is revealed in the x-ray (Hald Nielsen pers.
comm.). The HD evaluation is, therefore, a subjective evaluation based on a set of
certain principles. The degree of the condition cannot be confirmed like a binary case
of cancer or no cancer, which can be assessed over time. Therefore, within reason, it
is possible to argue that a C hip is actually a B hip. As such, in the Nordic countries,
it is possible to request a re-evaluation. In these cases, the original x-ray image is
sent to another Nordic country for analysis. For example a re-evaluation of an x-ray
image from Sweden could be sent to KU. After the evaluation, the result will be sent
to the Swedish database. Therefore, a few images from the KU database are missing
from the DKK evaluation. However, these cases are rare and within Denmark only
10 HD cases were submitted for re-evaluation in 2016 (Proschowsky pers. comm.).
In the case of regular HD evaluations by KU, the results are sent to DKK, and the
images are stored in the KU database.

Figure 7: X-rays images illustrating different Norberg angles and evaluation scores. Image
from Hald Nielsen

In terms of increasing chances for a better evaluation, it is believed that age
can play a factor as younger dogs do not always show as strong signs of HD as
when they are fully grown (see figure 8). As per the rules of FCI, it is possible to
have screenings made when the dog is between one and 18 months, depending on
the breed (Hald Nielsen pers. comm.). Knowing this, professional breeders have a
tendency to get their dogs evaluated as early as possible because it is favorable for
the evaluation.
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Figure 8: X-rays from the same dog at one and two years of age. Not all dogs exhibit such
a drastic change from year one to two. Image from Hald Nielsen

Within radiology, it is a rule that images of patients are always presented as if the
patient was facing the doctor face-to-face. This ensures that the orientation of left
and right of the patient is not confused. To further ensure the correct orientation,
radiologist and other medical professionals are trained to place a tag, demonstrating
the right and left of the patient during a scan. However, as seen in the hips in
figure 9, doctors are not always consistent with this procedure and some images are
miss-oriented. This problem was discovered during image annotation for the object
detector.

Figure 9: On the left, we see an x-ray with correct orientation - ’R’ on
the correct side when facing the doctor. On the right, we see an x-ray
with incorrect orientation - ’H’ on the wrong when facing the doctor.

In the x-ray scans, the orientation tags appear with different abbreviations using
both Danish and English terminology. There are no accepted international standards
for the orientation tags and in Sweden, for example, Latin terms are frequently used.
In our dataset, left is usually labeled as VB, V, or L and right is usually denoted with
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H, HB or R. As the tags appear with different font-style and the images also can
include other text, it can be challenging to define a simple detector for. Therefore,
although it is easy for a human evaluator to identify, it becomes a problem for a
computer vision system, unless it learns how to differentiate between the different
tags and other text. From a sample of 100 x-ray images, 81 percent were with tags
indicating the correct orientation, 11 percent were with the tags indicating the wrong
positioning and 8 percent were without tags. In the cases where there were no visible
tags, the evaluator from KU will assume correct orientation and hence the evaluation
in the database will match the individual hips. The issue for a classification model
only occurs when the orientation is wrong and when the score of the two hips differ.
From an analysis of the DKK dataset, just 17 percent of the evaluations included
different ratings of the two hips. Therefore, it can be concluded that a classification
model, can be built based on 98 percent accurate data 1 , given that the study of
100 images is representative. Another issue that was identified was the fact that
the veterinary clinics would sometimes submit multiple images and the evaluator at
KU would choose the image of the highest image quality without deleting the other
images from the database. Therefore, certain cases appear as overrepresented in the
database and it is not possible to identify with certainty which image was the basis
of the evaluation. To avoid this issue, cases with multiple images were removed in
the preprocessing step.

2.2 Bias in Dataset

In regards to the data quality, we also need to examine risks related to certain biases
in the dataset. Although not a distinct sign of bias, we learned from conversations
that Hald Nielsen, the KU evaluator, is provided information that does not appear in
the datasets such as the age of the dog. Further, we learned that Hald Nielsen has an
intuition on how the hips of a young dog will develop for a specific breed. Although
she is not allowed to take the age-factor into considerations for the evaluation, it
could subconsciously impact the final evaluations. In other words, if two nearly
identical hips are between a B and C, but one dog is 1 year old and the other is 2
years old, it is possible that they receive a different grade. Without age information,
it can be more difficult for the classifier to predict these edge-cases.

2.3 Research Goals of DKK and KU

Related to the design of the classifier, both McEvoy from KU and Proschowsky from
DKK have expressed greater interest in a classifier capable of detecting the health
of the individual hips rather than simply the final score (the worst of the two hips).
Further, an object detector for the femoral head was also of interest as it would
enable other HD experiments to be investigated by McEvoy.

1Calculation based on the following: (1 - (0.11 images with wrong labeling * 0.17 evaluations
with different HD scores))
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3 Brief History of Artificial Neural Networks

The term Artificial Neural Network (ANN) is used to describe computer systems
that are vaguely inspired by the biological networks of the brain [3]. One of the
common ANN tasks aims to replicate our ability to process image inputs. In fact,
developing computer vision systems on par with human capabilities have challenged
researchers for decades [4]. Since recognizing objects is a task that requires you to
identify abstract object patterns from different perspectives and in different light-
settings, it has historically been challenging to develop a rule-based system [5].
ANNs, however, do not rely on rules-based code, but instead relies on sufficient
data to iteratively develop the pattern-recognition (rules) which correctly maps in-
put to output. Over the last few years, major improvements in terms of computer
vision have been achieved thanks to deep neural networks (DNNs), a type of ANN,
larger datasets and utilizing multiple GPUs for training [5].

Before diving into the technicalities of these architectures, I would like to intro-
duce the inner-workings and history of ANNs first. Although ANNs have recently
become a hot topic within both academia and industry, the fundamental ideas have
been around for decades. The first contribution to ANN is considered to be a paper
published by McCulloch and Pitts in 1943 [6]. In their work, they tried to under-
stand how the brain can compute highly complex behaviours, using processing units
as simple as neurons. This paper proposed a mathematical design of calculating an
output based on neurons with several weighted inputs. However, the implementa-
tion by McCulloch and Pitts was limited as the model only included a single layer
and was missing an algorithm for learning.

That said, the artificial neuron designed by McCulloch and Pitts, is the foun-
dation of neurons in modern ANNs (see figure 10). In modern ANN designs, the
computation inside a neuron is to multiply the input by a weight, then add bias and
finally transformed the input via an activation function. The activation function is
what ensures that the network learns non-linear mappings between the inputs and
outputs. There are different activation functions, but what they have in common is
that the functions are non-linear [7]. This will be explained in more detail in the
chapter about CNNs 4.

Figure 10: Illustration of computation inside a neuron of modern ANN. Inputs are mul-
tiplied by weights, added a bias, and then transformed via an activation function. Image
from DeepLearning.ai
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3.1 Rosenblatt’s Multilayered Network

In 1958, Rosenblatt developed a neural network classifier, based upon the ideas of
artificial neurons by McCulloch and Pitts. The network was a binary classifier,
mapping a series of inputs to a single binary output:

f(x) =

{
1, if w ∗ x+ b > 0

0, otherwise
(1)

Rosenblatt’s implementation was called Mark I Perceptron [8], a network com-
posed of one layer of trainable parameters randomly connected to the input layer
and an output of 8 binary neurons. Although Rosenblatt also argued for implement-
ing a multi-layered architecture, like we see in image classifiers today, he was not
able to produce noteworthy results with a multi-layered approach due to the lack of
an efficient way of tuning the parameters. In effect, without a learning algorithm,
the hype about artificial intelligence and neural networks imploded and research
suffered a drastic cut in funding during the seventies to mid-eighties [9].

Figure 11: Illustration of Rosenblatt’s Perceptron in which neurons are sparsely connected
and the model has binary outputs. Illustration from [8]

3.2 Backpropagation

It was not until Rumelhart, Hinton and Williams in 1986 proposed utilizing back-
propagation and stochastic gradient descent [10] that neural networks began to show
promise again. In short, backpropagation works like an iterative cycle in which in-
put is passed forward through the layers of the neural network and transformed via
linear and non-linear computations 10. Once the input has reached the last layer
of the network, the prediction is then compared against the ground truth label. By
comparing the prediction with the ground truth, an error is calculated by a loss
function. The computed loss is then used to update the weights of multiple layers
of the network in order to minimize the total loss (see figure 12). To do so, back-
propagation uses the chain rule to compute the partial derivative (the direction of
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the error in relation to the loss-function), given that the derivative depends on the
functions of the previous layers.

Figure 12: Illustration of Stochastic Gradient Descent. The gradient of the loss, J(w), in
relation to the weight is computed. For every iteration, a step is made towards the negative
direction of the gradient in order to minimize the loss. Image from Medium

Traditionally, the fine-tuning of the weights and bias have been computed using
an optimization algorithm called Stochastic Gradient Descent (SGD). SGD itera-
tively estimates the best direction of the weights and biases using a subset of the
whole dataset to minimize the loss function, hence an incremental improvement.
SGD is different from traditional gradient descent in that the weights and biases
are updated after analysing a data subset, known as batch size, which is much less
computing intensive than computing the gradient for every data point. Since SGD,
several alternatives have been proposed - most notably are the Adaptative Learning
Methods such as ADAM. Without going into too many details, ADAM works by
computing the momentum of gradient descent by taking the previous weight updates
into account. ADAM has proven to converge faster than SGD 13.

Figure 13: ADAM compared to other learning algorithms on the MNIST dataset. Image
from ’Adam: A Method for Stochastic Optimization, 2015’.

To avoid changing the direction of the weights and biases too much at each batch,
also known as over-fitting, a learning rate is introduced to decrease the direction of
the weights by a specific factor. Careful tuning of this parameter is required for
optimal training. Other techniques such as batch normalization can be used to
ensure that small changes early in the network do not amplify deeper in the network
[11]. Later in the section, batch normalization will be explained in greater detail.
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3.3 Revival of AI Research

With the introduction of these new training techniques, research on ANNs became
active again. In 1989, Yann LeCun, now Director of AI Research at Facebook,
[11] developed a digit recognition system using data from the US Postal Service,
and proved that ANNs could be used to solve a complex practical computer vision
problem [12]. The particular kind of neural network applied by LeCun is known
as LeNet and is a type of convolutional neural network (CNN). In practice, LeNet
is not used anymore. Instead, it is remembered as a historic model within the
field of computer vision that showed the potential of CNNs. In fact, CNNs have
since outperformed all other vision algorithms in academic competitions such as
ImageNet [5]. In the next chapter, we will examine CNNs and why they are so
efficient at computer vision applications.

Figure 14: The LeNet architecture - illustrated with a letter instead of a digit. As de-
picted, the number of feature maps increases deeper in the network, whereas the resolution
decreases. Image from Research Gate

4 Convolutional Neural Networks

One of the challenges with training a neural network is the number of parameters
(mainly weights) that needs to be tuned. The deeper the network (number of layers)
and the larger the input size, the more parameters need to be trained. In a fully
connected ANN, every neuron in each layer is fully connected with every other
neuron in the previous layer. Since every connection includes a weight, the number
of trainable parameters increases significantly by increasing the number of initial
inputs and network layers. LeNet, and other CNNs, are similar to the perceptron
architecture (see figure 11) in that every neuron does not fully connect to the neurons
in the previous layer. Instead, a CNN is built on layers of kernels, also known as
filters, which are weight matrices that are applied across the inputs of the previous
layers (see figure 15).

18



Figure 15: Illustration of the operations inside a CNN. The weights in the kernel are applied
to the input (the blue square) which produces a single output (the red square). This example
is with a kernel of size 3x3. Image from Joseph Redmon.

The architecture of CNNs drastically reduces the number of trainable parameters
when compared to a fully connected network. As seen in 15 the weights in the
kernel (also known as a filter) are applied to a specific region of the inputs space
and producing a single output. By updating the weights inside the kernel through
backpropagation, the kernel learns to detect certain general features from the input
vector. This ability is particularly useful for image data as multiple filters learn
to detect different features of various complexity (lines, objects, etc), which can be
used across the entire image. Using a filter across an image is referred to as a sliding
operation. The CNN characteristic of using a set of weights across an entire image
is commonly known as parameter sharing [13]. After applying a filter across the
entire image, the output is referred to as a feature map. Usually, as the inputs move
deeper into the CNN, the number of feature maps increase while the resolution size
decrease. This happens as multiple filters are applied at every layer and the use
of max-pooling, stride or no padding decreases the input size. The reason behind
the dimensionality reduction, is straight-forward given a basic understanding of how
filters and pooling works. Below is an introduction to the parameters of CNN filters
including window size, stride and padding:

• Window size determines the size of the filters. So in other words the number
of weights. In figure 15, the window size is 3x3.

• Stride is a parameter that determines the space between the inputs as the filter
is applied as seen in figure 16 and in figure 17.

• Padding allows the corners of an image to be analyzed by a filter as padding
adds null values around the existing image as seen in figure 18.
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Figure 16: Example of input and output volume with a stride = 1. Image from [14]

Figure 17: Example of input and output volume with a stride = 2. Image from [14]

Figure 18: Example of zero-padding of size 2. Image from [13]

Based on the values of the input size, stride and padding, it is possible to calculate
the output size. The formula is as follows:

OutputSize =
Input size−Kernel Size+ 2 ∗ Padding

Stride
(0)
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Instead of activating the feature map with convolution filters it is also possible to
use a technique called pooling. Unlike filters, pooling does not rely on any weights
to be tuned. Max pooling, for example, simply outputs the maximum input value of
the window size as illustrated in figure 19. Whereas, another type of pooling called
average pooling outputs the average value of the window size. Common to both is
that the operation of pooling reduces the input size and that no parameter tuning
is required.

Figure 19: Illustration of Max Pooling. As seen, the highest value from the coloured grids
(left) are extracted to the grid on the right. Image from [13]

For CNNs, the activation function called ReLu and Leaking ReLu are often used
and therefore should also be briefly explained. ReLU is an example of a simple
activation function; In short, it takes the input value and outputs zero if the input
is zero or negative or the input if the value is positive (see left in figure 20). Leaking
ReLu (on the right) is a variant of ReLU that avoids that the output is zero for
inputs less than zero. The reason why it can be important to avoid zero as an
output is because the value zero can subsequently turn off the next layers.

Figure 20: Illustration of the ReLu (left) and leaking ReLu (right) activation function.
Image from Towards Data Science.

The fact that the model will ignore parts of the network during training when
the output value is zero can be used to reduce over-fitting. The technique, known
as dropout, aims to ensure that certain parts of the network is not over-used and
thereby causing over-fitting to the training data. It works by randomly turning off
neurons during the training process (setting the output to zero), which prevents the
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model from over-relying on certain patterns during previous training and instead
learn to identify new features that hopefully generalize better.

With all the previously described components, many different convolutional neural
network architecture can be designed. Certain patterns of layers have been shown
to perform particularly well, particularly in image related tasks, and have become
a sort of standard. For more general purpose classifiers, the first influential CNN
architecture was defined by Krizhevsky, Sutskever, and Hinton, in 2012, and has
become known as AlexNet [26]. In the original LeNet architecture illustrated in fig-
ure 14, the input size was 28x28 pixels per image. However, an image size of higher
resolution is required to visualize more complex objects and scenes. To give an intu-
ition of how the parameter complexity of the input layer scales with the resolution
size, consider that LeNet, in 1985, was trained on the simplest dataset for computer
vision - 28x28 pixel grayscale images of handwritten digits [12]. Given this input
size, the input layer of LeNet was of 784 inputs (28x28). AlexNet, on the other hand,
was trained on 224x224 pixel RGB images, making the input layer consist of 150,528
inputs (2224x224x3). Not only does the input layer contain more parameters, the
following layers also become more complex as the inputs are convoluted and reduced.

Today, our computing resources and data repositories far exceed the days of LeNet
in 1985, and the highest image resolution applied for pre-trained networks computer
vision networks of general applications are around 512x512 pixels RGB images. This
includes various object detectors such as DeNet and SSD [15], which have a total of
786,432 inputs in the input layer. To put that into perspective, the input size for a
state of the art object detector today is more than 3,000 times larger than the input
size of LeNet.

Although CNNs have been trained on higher resolution images than 512x512, in
particular in the medical field, it is a rarity as aggressive use of max-pooling is re-
quired to compress the input as used in the papers by Geras [16] and Wang [17].
However, in both cases, the data size exceeded 100.000 images, which is well-beyond
my available dataset on hip dysplasia.

Figure 21: Areas of interest in chest ill-
ness analysis. Image from [17]

Figure 22: Areas of interest in cancer
analysis. Image from [16]

Among classification models, they are usually designed for 224x224 pixel input.
There are several reasons for this; Large public databases such as COCO [18] and
Imagenet [19] contain images of a certain size. Further, it has been proven to be
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a resolution that is sufficient for effective classification, and finally larger resolution
sizes require more computing power, which was limited during the creation of these
datasets. In table 3, some of the most known classifiers are listed as well as the
resolution size they are designed for.

Table 3: Overview of famous classifiers and their designed input size.

Architecture Input Size Year Published

VGG 224x224 2012
ResNet 224x224 2015
Inception V3 224x224 2014

To determine the efficiency of the architectures, they are tested on the same
public datasets so that the results can be compared on the same foundation. One
of the best-known image classification dataset is known as Imagenet, which consists
of more than a million images spread across thousands of classes [4]. Since 2012,
and the introduction of AlexNet [20], the improvements in classification accuracy
has steadily improved to the point in which we have reached accuracy on par with
humans as seen in figure 23. This is partly due to the fact that AlexNet showed the
potential of CNNs in image classification and other contestants started to develop
models inspired by its architecture. In fact, by 2014 all competitors at ImageNet
used CNNs [4]. It should also be noted that AlexNet also introduced a novel training
approach using multiple GPUs to speed up the process [20].

Figure 23: Best results of the ImageNet competition from 2010 to 2015. Ever since the
introduction of AlexNet in 2012, the error rate fell year over year until it reached human
level in 2015. Image from Nvidia Developer Blog.

4.1 Classification

On a high-level, computer vision can be divided into classification and object detec-
tion. Classification is the task of analyzing the entire image in relation to categories
or a certain regressional score. One example use-case of classification includes de-
tecting the presence of a cat in an image. Due to the ease of access to training
data of cat images on the internet, and the fact that neural networks are known for
requiring a lot of data, this was one of the easier implementations during the early
days. Another example use-case of classification, which is relevant to this thesis, is
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determining if cancer is present in a medical image. To determine the accuracy of a
classifier, we analyse the precision see formula (1), recall see formula (2) and the f1
score see formula (3) of a model. Ideally for a classifier, it has both a high precision
and recall, which is illustrated in the formula for f1-score.

• Precision is calculated as the number of correct predictions out of all the pre-
dictions of a certain class. In other words, if a model is good at accurately
predicting a certain class.

Formula for precision calculation:

predicted instances ∩ relevant instances
predicted instances

(1)

• Recall is calculated as the number of correct predictions out of all the cases of
a certain class. In other words, if a model is good at identifying instances of
all the examples of a certain class.

Formula for recall calculation:

predicted instances ∩ relevant instances
relevant instances

(2)

• The traditional F-measure or balanced F-score (f1 score) is the harmonic mean
of precision and recall.t

Formula for f1 score:

F1 =
2

1
recall +

1
precision

(3)

ResNet

One of the famous classifier networks is called ResNet and was published in the pa-
per Deep Residual Networks for Image Recognition on December 2015 by Kaiming
He from Microsoft Research [21]. The idea behind residual networks is that the
accuracy of image classification should improve in deeper networks as more complex
abstractions are made possible by additional convolutional layers. However, one
challenge with training deeper networks is that the gradients move towards 0 or in-
finity also known as vanishing and exploding gradients. This happens if consecutive
weights are especially large or small, thereby making it difficult for the chain-rule
in gradient descent to update the weights of the model. One solution is to more
carefully initialize the random weights inside the network to limit the chances of
consecutive large or small weights [22]. However, this only works to some extent.
As seen in the training graph in figure 24, the accuracy of the traditional classi-
fier does not keep improving by adding more layers. In the paper Deep Residual
Learning for Image Recognition, the authors propose an architecture that includes
residual blocks, allowing inputs to skip layers during training and thereby improve
results with deeper networks.
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Figure 24: Classification accuracy with shallow and deeper CNN as a function of number
of iterations. The training error does not improve by training with 56 layers instead of 20
layers. Image from [21]

The core idea of residual blocks is to introduce a so-called identity shortcut
connection that learns when to skip one or more layers, as shown in figure 25. To
do so, the model needs to learn a mapping of an identity function, which helps
determine when the inputs skip a layer. The approach to this is to change the
output function of the neurons to be computed as y = F(x) + x, rather than simply
y = F(x). By making this change, the model can learn when F(x) is 0, and hence
when the input is directly passed through the neuron as the output. The reason
why this small tweak works mathematically, is because it is easier for the model to
learn to compute a relative change (Frellsen pers. comm.).

Figure 25: Illustration of a residual block showing the concept that the input, x, passes
through the block directly as output and are then added to the computation of the block,
F(x). Image from [21]

By designing a CNN with residual blocks 25, Kaiming He and his team were able
to successfully train much deeper networks than previously attempted. Compared
to VGG-19, a network of 19 layers, ResNet proved to be efficient at a depth up
to 152 layers. Further, although ResNet was up to 8x deeper than VGG, it would
still have lower complexity (number of trainable parameters) than VGG due to its
network design [21]. From the ResNet experiments on various depth, the intuition
that deeper networks are able to identify more complex features were proven as seen
in figure 26.

25



Figure 26: ResNet at different depth compared to other efficient classifiers. As seen the
deepest network, ResNet-152 performs with the highest accuracy. Image from [21]

4.2 Object Detection

Although classification is a powerful technique in analyzing images, it is limited to
identifying a single object in an image i.e. the class with the highest confidence for
a particular image. This implies that no information about the location of the class
is estimated. Object detection, on the other hand, enables the detection of multiple
objects in an image as well as their location. Hence, this is a more complicated
task compared to classification as more information needs to be estimated: Rather
than just identifying the presence of a single class, an object detector is detecting
multiple classes and their respective location. Whereas classification models are
able to perform on par with humans (see figure 23), we have still not reached human
levels in terms of object detection, which is used for applications such as self-driving
cars (in which model speed is critical) and surveillance technology. Before explaining
the different approaches to object detection, it is crucial to have an understanding
of how we compute the accuracy of object localization. In object localization, the
goal is to improve the area of overlap between the predicted boundary box of the
object and the ground truth boundary box illustrated in figure 27. To calculate
the accuracy we use the formula for IoU, which stands for intersection over union.
As illustrated in figure 27, an IoU score of around 0.4 is considered poor, whereas
0.7 is considered good and 0.9 is excellent. There are no exact numbers for what
constitutes a good IoU score, but renowned Deep Learning professor Ng stated that
a score above 0.6 is considered good [23].
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Figure 27: Illustration of how IoU in object detection is calculated. As depicted, the greater
the overlap between the ground truth and the predicted box, the greater the IoU. Image from
pyimagesearch.com

Another important object detection measurement is the mean average precision
(mAP). The mAP is calculated differently for PASCAL VOC and COCO datasets
as the ground truth is annotated differently. In our implementation of an object
detector, we will use annotation in the PASCAL VOC format and therefore we will
focus on the mAP calculation in relation to this type of annotation. Average Preci-
sion (AP) with Pascal VOC is calculated as the number of correct class predictions
with an IoU over 0.5 out of a certain class. Hence, mAP is simply the average AP of
all the classes. mAP is particularly interesting when building object detectors that
need to distinguish many classes, of which some might appear very similar. In our
implementation of HD, the number of classes are constrained to detecting left and
right hips and therefore if our estimated IoU is generally above 0.5, the mAP should
also be high if the model can distinguish between left and right hips.

Just like ImageNet was a public dataset that allowed researchers to train, compete
and improve their classification models, Pascal VOC and COCO are the equivalent
public datasets used to train object detection models. The two datasets vary in
their format and object annotation detail. Whereas Pascal VOC is a dataset of
images with annotated boundary boxes of objects stored in xml format (see figure
29), COCO is a dataset which identifies the objects pixel by pixel (see figure 28).
Therefore, the COCO dataset is much more expensive to generate as it requires
more precision and time to annotate every object.
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Figure 28: Example of COCO annotated
image file. Image from Facebook Re-
search

Figure 29: Example of Pascal VOC an-
notated image file. Image from Univer-
sity of Oxford.

Now that we know the goal of object detection, we can explore how some different
object detection architectures work. Historically, the first attempt to build object
detectors was to repurpose classifiers by slicing the image into smaller cells and
perform detection over the individual cells [24]. This was done by sliding the classifier
with a given window size over the cells as seen in figure 30.

Figure 30: Illustration of how a classifier can be used in object detection divided into a grid
of cells. Image from StackOverflow.

At each window step, you run the classifier to predict the most likely object inside
the current window. As such, this approach can give several hundred predictions
for an image depending on the input and cell size. To limit the number of predic-
tions, a confidence threshold is used so predictions with low confidence are removed.
This approach of a re-purposed classifier has the disadvantage of not being able to
detect multiple objects inside one cell and also have a disadvantage when it comes
to detecting objects that are separated by two cells. Further, the computational
resources for this approach are intensive as inputs are passed to the classifier mul-
tiple times. Lastly, the classifier does not specify the location of the object - solely
which object was detected in which cell. In other words, this approach is a rather
brute force approach to object detection, which is both slow and inaccurate. A more
intelligent alternative than using a classifier over every cell of an entire image is by
algorithmically identify areas that are likely to contain objects. This is referred to
as generating region proposals.
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R-CNN and SSD

R-CNN is one of the most famous object detection model built on the idea of region
proposals [25]. Although, R-CNN was an improvement to the brute force approach
previously explained, it was still slow as it relied on separate models: One for region
proposals and one for classifications (see figure 31). Having two separate models
also made training computer resource intensive. Since the inception of R-CNN,
multiple improvements to the original version has been introduced such as Faster
R-CNN. However, the approach with region proposal had a lower ceiling in terms
of computing speed, given the constraints of the network design.

Figure 31: Object detection with R-CNN is composed of two steps: First, the model iden-
tifies region proposals. Then, a classifier is used on top of those region proposals. Image
from Towards Data Science.

Today, two of the most efficient models for object detection are YOLO and SSD.
SSD, also known as Single Shot MultiBox Detector, is developed by UNC, Google
and University of Michigan [15]. The model is inspired by the successfully CNN
classifier architecture known as VGG-16, but rather than the fully connected layers
in the end for object classification, the architecture has been revised to detect class-
agnostic boundary boxes based on feature maps from different layers in the network.
This approach is known as a single shot approach. The illustrations in figure 32 and
figure 33 show how boundary boxes are detected from multiple layers in the network.

Figure 32: SSD Network Architecture
Figure 33: How multi-detection is per-
formed at different layers

Figure 34: Illustration of SSD architecture and single shot approach. Predictions for object
detection are made from different layers in the network. Images from Towards Data Science

To optimize the predictions of the boundary boxes, the SSD loss function com-
putes both confidence and location loss. The confidence loss measures how confident
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the network is at predicting the specific class. Categorical cross-entropy is used to
compute this loss. Location Loss measures how far away the predicted bounding
boxes are from the ground truth from the training set. L2-Norm is used to compute
the location loss.

SSD has become known as one of the most accurate approaches to object detec-
tion. When SSD was released in November 2016 its performance was 75.1 percent
mAP on 500x500 pixel input on the VOC dataset [15]. When trained on the same
dataset but with a resolution of 300x300 pixel input, the accuracy was 72.1 percent
mAP showing that higher resolution can positively impact detection.

YOLO

YOLO, also known as You Only Look Once, was published by Joseph Redmon
from University of Washington in collaboration with Facebook AI in June 2015
[24]. Compared to the other object recognition architectures previously mentioned,
YOLO relies on a single end-to-end neural network with outputs at the end of the
network. As such, YOLO is not a traditional classifier that has been re-purposed for
object detection. Instead, YOLO is a single shot approach designed to solve a single
regression problem - straight from pixel inputs to proposed bounding boxes and
class probabilities. This makes YOLO perform faster when compared to the other
object detectors, yet despite the speed upside YOLO also pertain a high accuracy
on boundary box predictions as seen in figure 35.

Figure 35: YOLO and YOLO v2 results on Pascal VOC datasets compared with different
designs of SDD. YOLO v2 performs at the same accuracy as SSD 500, but is significantly
faster. Image from Joseph Redmon.

Since the original YOLO paper was released, a newer version known as YOLO9000
or YOLO v2 was released on December 25th 2016. The updates to YOLO included
techniques to improve the accuracy, increase the number of object detection per
image and extend the number of classes for categorization. As seen in figure 35,
YOLO v2 is just as accurate as SSD500, but it is much faster as it computes 67
frames per second instead of 19. For applications such as self-driving cars or surveil-
lance cameras, it is important that the object detection model is fast and does not
require too much computing resources, so it can be completed on-device. In the case
of HD, we are only interested in accuracy.
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The building blocks of YOLO’s architecture is simply using convolutional layers
with a 3x3 kernel and max-pooling with a 2x2 kernel. For every filter (3x3), the
padding parameter is set to ’same’ ensuring that the output feature map has the
same dimensions as the input. The only operation in which the size is compressed is
during the max-pooling (2x2) effectively halving the image size every time. While the
resolution decreases deeper into the network, the number of feature maps increases.
Before the last layer, there are 1024 feature maps of 13x13 pixels. The resolution
of each feature maps is exactly 32 times smaller than the original input of 416x416.
The number of feature maps is finally reduced to 125 by using 125 of 1x1x1024 filters
(see figure 36).

Figure 36: The layers in the Yolo v2 network. Image from Kaggle

Aside from max-pooling and convolution layers, batch normalization and leaking
relu are frequently used in YOLO. These concepts have been previously explained.
However, Batch normalization works a bit different with CNNs, and hence a more
in-depth understanding is required. As previously explained, batch normalization
is simply the operation of adjusting the input, so that they represent a similar dis-
tribution at each individual layer of the network. This can help speed up training
results and stabilize training of deeper networks [11]. More specifically, batch nor-
malization changes the inputs of the mini-batch before activation at each layer so
it has unit standard deviation and zero mean before it is scaled and shifted by a
beta- and gamma value which is learned during training (see figure 37). Beta is the
scale factor, while gamma is the variance factor. By using batch normalization it
causes the values to become more stable in the network, which improves the accu-
racy [11]. Specifically with CNNs, batch normalization works across the multiple
filters of each layer, meaning that the normalization is computed across multiple
means of the feature maps. Batch normalization can be applied at different stages
of a CNN, however, in the original implementation it is used before the activation
function [11].
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Figure 37: The steps to compute batch normalization. Image from [11]

To detect the boundary boxes, YOLO v2 down-samples the images of 416x416
pixels by 32 into 13x13 grids. For each grid cell up to 5 boundary boxes are predicted.
Therefore YOLO v2 is able to detect up to 160 (32 times 5) objects inside an image.
The output of this operation is a one-hot vector containing the predicted confidence,
center and dimensions of the boundary box as well as the predicted classes. To
optimize the predictions of the class prediction and boundary boxes, YOLO’s loss
function is divided into five parts that together compute the total loss from which
the gradients are tuned (see figure 38).

Figure 38: The total loss function of YOLO is composed of five terms. The expressions
are explained individually below. Image from Towards Data Science

1. A term to penalize for bad localization of the center of the boundary box

2. A term to penalize for bad detection of in-accurate height and width dimen-
sions

3. A term to predict whether an object is present there based on IOU of the
ground truth

4. A term to calculate the confidence close to 0 when there is no object in the
cell
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5. A term to compute the classification loss from the class category predictions.

As mentioned, YOLO v2, compared to the original YOLO, is more accurate in
predicting boundary boxes and also is able to classify from more nuanced subclasses
such as certain canine breeds instead of just dog. The exact differences between
YOLO and YOLO v2 in regards to prediction accuracy can be seen in figure 39. As
seen in figure 39, several design changes impact the increase from 63.4 mAP to 78.6
mAP. The specific details regarding the improvements can be found in the paper
[26].

Figure 39: The figure illustrates the design improvements of YOLO v2 with the original
YOLO. As seen, the addition of several new characteristics to YOLO v2 improves the mAP
on Pascal VOC 2007 from 63.4 to 78.6. Image from [24]

4.3 Transfer Learning

Lastly, before diving into the implementation of the object detector and classifier
for HD, it is important to cover the idea of transfer learning. One of the challenges
with training neural networks is the fact that the models require a lot of training
data before they perform well. For example within the field of image recognition,
ImageNet contains more than a 1 million training images distributed equally over a
thousand classes. As explained in previous chapters, a CNN learns to detect simple
lines and shapes in its first layers, but deeper in the network more complex levels of
abstractions are learned. Since some of the same patterns inside the filters (curves,
lines, eyes, etc.) can be relevant together at detecting similar classes, it makes sense
to train large datasets of various classes.
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Figure 40: Notice that the first-layer weights are very nice and smooth (image on left side),
indicating nicely converged network. Images from [13].

Figure 41: Typical-looking filters on the
first CONV layer of a trained AlexNet.
In this layer, it appears as if the filters
both learn RGB and grayscale patterns.

Figure 42: Typical-looking filters on the
2nd CONV layer of a trained AlexNet.
As seen, the number of filters increases
in order to detect more complex features.

Additionally, the fact that a CNN learns general rules, can be utilized to re-train
a network for new classes. This type of training is known as transfer learning, as
learned patterns from one domain are applied to another domain. As an example, it
is possible to learn a model pre-trained on ImageNet to recognize raccoons, a class
it has not been trained on, with relatively sparse data (200 examples). This is due
to the fact that the model already knows how to recognize features like eyes, faces,
fur, etc, from training on other classes on ImageNet. In relation to the dataset for
this thesis, the data size is below 20,000 examples (after preprocessing) and not
balanced across the different category classes. In fact, only 873 and 333 instances
are available of hip calls D and E respectively. Given that previous network such
as LeNet, which was designed for a less complex task, still requires 60,000 instances
to be trained from scratch, albeit on an inferior network design, it is fair to assume
that our HD dataset will not suffice without a pre-trained model. That said, the
degree to which a pre-trained model is better (or perhaps worse) would have to be
tested before a proper conclusion can be made.

Since transfer learning is mainly applicable due to the general filters learned in
the earlier layers of the network, it can be debated if a deeper network like ResNet
is advantageous. That said, today’s number 1 ranking Data Scientist on Kaggle,
known as Bestfitting, usually begins with a ResNet like architecture when starting
a new project [27].

5 Considerations Regarding Classification Input

Given the sparse amount of HD data, it has been explained that transfer learning
most likely is a requirement. However, since the dataset of x-ray images consist of
one-channel images i.e. grayscale, a pre-trained model on grayscale images would
have to be used or the x-ray images would have to be converted to a three-channel
format. If not then the input would not fit the weights of the pre-trained model.
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Figure 43: Illustration of the input layer of a CNN trained on RGB images. Since the
inputs are three-channel, the corresponding weight matrix will be of depth 3 as illustrated
with the black outlines of a 1x1x3 weight matrix. Image from XRDS.

Among grayscale public datasets, MNIST is the most famous which consist of 28
by 28 pixel images of hand-written digits. Both the resolution and the complexity
is deemed too low for a HD classifier. Hence, another option would be to find a
pre-trained model in which all images of ImageNet had been converted from three-
channel images into grayscale. Such a pre-trained model could not be identified
somewhere online and hence would have to be trained with the available resources
which were deemed too costly in terms of money and time. Therefore, it was decided
to convert the grayscale images into RGB format. The risk related to this approach
is that the pre-trained model has learned colour sensitive patterns (see figure 41) and
although the grayscale images are converted into three-channel images, they are still
black and white and hence do not reflect the training data of the pre-trained model.
Whether this risk is relevant will have to be examined through actual experiments.

From the conversation with Proschowsky from DKK and McEvoy from KU, it be-
came clear that they were more interested in a model that could predict the score of
the individual hip than simply the worst score of the hips (the final score). We also
learned that in the evaluation process Hald Nielsen would both analyse the totality
of the x-ray for proper positioning as well as zoom in on the hip socket. To replicate
this process, we could either feed the network the full x-ray for classification of the
final score (see figure 44) or for classification of the individual hips (see figure 45).
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Figure 44: Sketch of CNN classifying straight from x-ray to the worst score of the two hips
i.e. a one-hot encoded vector that is 5 long

The latter approach, depicted in figure 45, is more challenging as the model is
required to predict from an output-space five times as large as in figure 44. When
the model is required to predict the two hips based on one image, the output space
is 25 long (5x5) in a one-hot encoded vector instead of just 5, making the task
more difficult. Given the limited data-size, noise in the full x-rays might challenge
the model in identifying the correct mappings. Therefore, figure 44 is preferred for
experimenting with classification of a full x-ray.

Figure 45: Sketch of CNN classifying straight from x-ray to two hip scores i.e. a set of 25
combinations

If a model was to be trained from scratch i.e. not rely on transfer learning, it
would be possible to design the network for two image inputs. In this case, the
input could be a version of the entire x-ray, combined with a hip extraction as seen
in figure 46. These multi image models are not supported by available pre-trained
models and this design is hence discarded is a viable option.
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Figure 46: Sketch of CNN classifying straight from full x-ray and hip crop to the worst hip
score i.e. a one-hot encoded vector that is 5 long

After analyzing the collected evaluations from DKK, it was discovered that the
positioning, rated from 1 to 3, was only rated 3, the worst score, in less than 1
percent of the cases and rated 2 in 15 percent of the cases. Further, Hald Nielsen
separately mentioned that solely focusing on the hip socket should provide enough
data for a proper evaluation. In other words, she did not deem the positioning score
very important. Hence, the desired architecture of the classifier was chosen to be
based on individual hip extractions as illustrated in figure 47.

Figure 47: Sketch of CNN classifying straight from x-ray hip crop to the hip score i.e. a
one-hot encoded vector that is 5 long

6 Data Preprocessing

Before implementing any object detector or classifier, the datasets must be examined
and prepared. The data pre-processing for this thesis can be distilled into the
following steps:

1. Converting DICOM into jpg images and storing DICOM meta-data in a sep-
arate csv file.

2. Cleaning datasets from KU and DKK by matching unique ids.

3. Separating images based upon evaluation scores.

4. Transforming images so that they are ready for an object detector.
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As the first step, we need an understanding of the DICOM format. In short,
DICOM is a standard for storing and transmitting medical images that is used
worldwide in radiology and hospitals [28]. The file format includes an image-array,
similar to a png or jpg file, as well as descriptive information regarding the patient,
image, etc. To view a DICOM image, a special program is required. Therefore, it
was decided to extract the image-arrays from the DICOM files, so standard python
image libraries could be applied. Although DICOM is a file standard, different x-ray
machines sometimes use slightly different notations (McEvoy pers. comm.). This
can cause some challenges when reading DICOM files, especially if a program is de-
signed to read multiple files consecutively. To extract information from the DICOM
files, two separate python script were written; One to extract the meta-data from
the files and one to convert the images. Both used the python library pydicom [29],
which allows to read and write DICOM files in python. It was observed that not all
veterinarians included the standard required information. To avoid that the script
crashed while iterating through the files and extracting the meta-data, attributes
were set to 0 values whenever the data was missing. The extracted information
was ultimately saved inside a csv file. From the csv file observations with 0’s were
then later deleted. Further, images from which the width exceeded the height were
deleted as well. This step was conducted because we know that the images should
be taller than wide, as that reflects the build of a dog. One way to avoid this issue
would be to rotate the images, however, the direction of the flip would have to be
manually supervised to avoid upside-down images.

Although the DICOM format is commonly used in the medical field, it is practical
to save the image information separately as a PNG or JPEG so standard python
image libraries could be used on the dataset. To store the images the fromarray
function from pydicom was used to read the image array and save it. Since some
of the DICOM files are duplicates, saved in separate sub folders, the shutil.copy
function from pathlib was applied in case that the path already existed. The reason
why the same DICOM file would reside inside multiple folders is because the files
received from KU were extracted from a database (PACS) that is not tailored for
bulk downloads. After all the images from the DICOM files and the corresponding
meta-data were extracted, a script was used to ensure that the two datasets (from
KU and DKK) were matching. In this process, images with corresponding unique
ids were moved into a new sub folder. Files that were not moved were ultimately
removed. After this data cleaning process, the resolution sizes of the images were
visualized to better understand the resolution variance across the dataset.
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Figure 48: The graph shows the variance in resolution sizes of the HD dataset. From the
images, we can identify a linear relationship between width and height.

As seen in figure 48, the observations approximate a linear relationship between
width and height. In other words, although the resolution differs, the ratio between
the width and height is somewhat consistent. When using neural networks it is
required to standardize the inputs ie. having the same resolution size for the entire
dataset. Clearly, the resolutions of the images vary a lot - spanning from approxi-
mately 800x500 to 4500x3500 pixels - however when the ratio is similar it is possible
to resize while avoiding drastic augmentations. To avoid any distortions to the im-
ages, it was decided to add padding to all images, giving them an equal dimension
in width and height. This was decided because most pre-trained models, which can
be used for transfer learning, were trained on square images. Inside the matrix of
an image array, the order begins from the top left corner. Therefore, padding was
added to the right side of the image to keep the same order of the original digits in-
side the image array 49. This is useful as the images also require rescaling, and since
padding is added to the end of the array, the position can easily be re-calculated of
the original image without having to take the variance of padding into account.

Figure 49: Illustration showing how padding were added to x-rays to standardize the image
size.

For neural networks, there is an upper limit for how large you can design the
input layer and still be able to effectively train the network. The limit is a bit of an
art as it depends on the architecture such as the number of layers, types of layers and
amount of data. Generally, for object detectors, they are rarely trained on images
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exceeding 512 pixels in width and height. For an image of 512x512 pixels extended
into a one-hot encoded vector the length of the vector is 786,432 inputs long. 2. If
the image is in grayscale, which is a format ranging between white and black, the
length of the vector would be divided by three. However, since pre-trained models
for transfer learning are almost exclusively trained on RGB images, it makes sense
to take the three colour channels into account. In relation to our problem domain,
one important question is if transfer learning on RGB dataset of dogs, cats, cars, etc.
can be applied to medical grayscale images converted into RGB format. To examine
this, all grayscale images were saved as RGB jpg files. Further, since YOLO v2 was
chosen for object detection, all images were downscaled to 416x416, the input size of
YOLO v2, after padding was added. Lastly, image files were separated into folders
matching their evaluation so that a classifier could utilize the dataset as well.

6.1 Annotating Boundary Boxes

In our dataset, we have dogs of various breeds and sizes. Therefore, the appearance
of the hip varies quite a bit. Normally this is a challenge in object detection, but with
CNNs it is feasible as long as sufficient data representing this variance is collected
the model will learn to identify a specific object regardless of the variance and the
placement inside the image. This is due to the fact that a CNN applies numerous
filters across the image input that detect different features. So in order to build a
hip detector with a supervised CNN, a lot of training data is required. With object
detection, as explained in earlier chapters, the image file and related boundary
boxes of the objects inside the image is required. As object detection is a technique
with a wide range of applications, scripts to outsource the annotation work-load on
Amazon Mechanical Turk are publicly available. Further, open sourced programs
can be downloaded to have a graphical UI for annotating. One of the popular
solutions available on Github, named Labellmg, was initially tested because it saves
the annotations of the objects in xml PASCAL VOC format and has a user-friendly
interface. In short, PASCAL VOC is a xml standard with a specific order in which
the image path, object label and location are stored. Labellmg works by drawing
labelled rectangles on top of images and saving corresponding xml files with the
objects. However, the program was unstable on my computer and it was also time-
consuming to draw the squares. So, instead of Labellmg, a custom python script
was developed that allowed to open images from a directory and extract the hip
location from just two mouse clicks. The program simply requires the user to click
on the center of the two hip bones from which the coordinates of the centers are
saved 50. By utilizing the fact that the diameter of each hip can be calculated from
the distance between the centers, given a constant ratio of 2.5, the location of each
hip was calculated (McEvoy pers. comm.):

Diameter =
left center x− right center x

2.5

2The reason why the length is (512x512x3) is because it is assumed that the image is saved in
RGB format and containing the three colour channels
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Figure 50: An example of the hip coordinates after clicking on the center of the femoral
head.

Based on the diameter calculations, the coordinates of the hips were calculated
and stored in a csv file. A total of 2,264 hips were annotated in this process. Since
miss-clicks would happen during the process (for instance a double click), the script
was amended in that the annotations would only be stored if the coordinates of the
two hips varied sufficiently. So by clicking close to the same coordinates twice would
skip to the next image without saving the annotation information. This feature
was also useful when duplicate images from time to time occurred (due to multiple
submission by veterinarians) by avoiding getting additional samples of the same
image. Finally, all the annotation information was saved inside a csv file. In figure
51, a sanity test was made by drawing the boundary boxes on top of the original
image to ensure that the coordinates saved were correct.

Figure 51: Checking that the boundary boxes are saved correctly in the csv file

In the annotation process, a variance in exposure and contrast were noticed in
the hip extractions. This could potentially be a challenge for the object detector and
classifier if the variance is not equally distributed across the different classes. The
examples in figure 52 were chosen to display the differences in image quality among
the hip extractions. Figure 52 is one of the few examples in which the femoral head
is not in the center of the image.
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Figure 52: Illustrating differences between x-rays

Figure 53 Figure 54 Figure 55

Figure 56 Figure 57 Figure 58

7 Object Detection with YOLO

With hip annotations saved in csv format, a script was created to convert the data
into xml files in Pascal VOC format for implementation of the YOLO algorithm.
Instead of implementing YOLO from scratch, open source models were found on
Github in different languages (Keras, Tensorflow, etc.). As mentioned, there have
been two YOLO releases and since YOLO v2 performs better, this algorithm was
prioritized over the original YOLO when searching for models. After testing out
different repositories, a library of YOLO v2 in Keras was chosen by Huynh Ngoc Ahn
[30]. Keras is a high-level language that operates with both Tensorflow and Theano.
While not as flexible as Tensorflow, it is a faster tool for building prototypes as less
code is generally required. The YOLO v2 repository is composed of the following
scripts:
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Table 4: YOLO v2 Repository Description

Script Title Description
backend.py Architecture of YOLO to initialize all

the layers
frontend.py Initialize YOLO with or without

weights, define loss, training and pre-
diction function

gen_anchors.py K-Means algorithm to generate bound-
ary box suggestions for the beginning of
training

predict.py Script to build the YOLO model and
run prediction on an image or directory

preprocessing.py Prepare and augment data on a given
dataset

utils.py Support functions for reading labels,
bounding boxes, weights, drawing
boxes and calculating the overlap be-
tween ground truths and predictions.

config.json Define the parameters of the YOLO
model

The step-by-step use of the code is the following (utils is used for most of the
steps):

1. Calculate the anchors used for the boundary box prediction by analysing the
annotation data (gen_anchors.py)

2. Define configurations of images size, batches, etc. (config.py)

3. Prepare the dataset including images and annotations based on the configu-
rations in training and validation sets (preprocessing.py)

4. Construct the YOLO network (backend.py)

5. Load the pretrained YOLO weights into the network (frontend.py)

6. Run training (train.py)

7. Test model on unseen data (predict.py)

7.1 Challenges with development environment

To run the YOLO model there are a few requirements described by the author.
One of them is to use python version 2.7 together with some image packages (CV2
and Imgaug). On my own computer, the script ran without any major obstacles.
That said, the training would take several days at the recommended number of
epochs and therefore GPUs were required. However, the environment setup ran into
some challenges with external GPUs. Since ITU had issues with getting their GPU
setup ready, I reached out to Barcelona Supercomputer Center (BSC) in October
2017 to potentially get access to their system. After three meetings, they agreed
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to help with access to one of their GPU clusters called MinoTauro, consisting of 8
Tesla K80 GPUs. Although, the resources at BSC were adequate, I was not aware
that their GPU clusters were not connected to the internet and only the support
team was able to make edits to the installed packages and environments. Given
their setup with Python 2.7 at BSC, Keras 1.1 was the only version available - not
sufficing for the script which according to the author requires keras 2.0.8. Further,
the image augmentation library imgaug and CV2 were not installed either. On the
other hand, a more up to date library of keras 2.0.6 was available with python 3.
Therefore, I began to convert the code to python 3 and importing the imgaug library.
Unfortunately, issues would keep occurring and after a week of testing alternatives
ie. other YOLO implementations and as well as augmentations to the code, I decided
to set up a GPU cluster with AWS instead. AWS offers a service called AML (short
for Amazon Machine Learning) that comes with a package of libraries for machine
learning pre-installed. One challenge with the configuration of the environment was
getting CV2 also known as OpenCV installed. OpenCV is an image library based
on C++, but can be installed with python given the right python wrappers. It has
been downloaded more than 14 million times [31], and hence is one of the most
popular image libraries. However, no matter the configurations (python version,
Ubuntu, Linux, etc.) on the AML environment, the library was missing essential
paths at run-time to execute. The solution was to side-step AML and create a new
environment on the server from scratch in python 3. Therefore, the code of the
original library was amended as well in order to accommodate the change. After
contacting AWS, they have now made updates to the environment so OpenCV works
again on their AML environments for python 3.

7.2 Training with YOLO

Rather than training YOLO on the canine x-rays to begin with, a Jupyter notebook
was used to get an intuition of the model as well as ensure the model worked on
simple use-cases with the pre-trained weights. This allowed me to get familiar with
the code and solve occasional bugs. From the YOLO weights provided by the original
author [24], a detector for giraffes and zebras was pre-trained and hence it was tested
if the Jupyter Notebook model was able to detect them (see figure 59).
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Figure 59: Testing the pre-trained YOLO Weights and classes it has already learned to
identify. Confidence scores are listed above the predicted boundary boxes. Image from [30]

After the test of the weights in Jupyter notebook, training with transfer learning
was tested with a command-line interface. To do so a dataset consisting of 200
labelled raccoon images was used with annotations saved in xml Pascal VOC format.
At that time, March 2018, only CPU resources were available and hence testing was
very time-consuming. The training was divided into two phases (warm-up training
and final training). At the warm-up phase the five detected boundary boxes in each
cell are forced to match the sizes of the 5 suggested anchors. According to the author,
this trick improves precision empirically [30]. Before the actual warmup training,
the pre-trained dataset is loaded and the output vector is updated to only include
one class (raccoon). Then after 3 epochs of warm-up training, the weights are then
saved. The second training phase includes up to 50 epochs and is initialized with
the saved warmup weights. During training, early stopping is set to 3, meaning that
if the validation accuracy does not improve after three consecutive training epochs,
the training is terminated and the best weights based on the validation accuracy is
saved. After several experiments, and a GPU setup with AWS, a reliable raccoon
detector was developed. Given these results with transfer learning, the next step
was to generate a hip detector. Below are the details of the configuration file prior
to training of the hip detector:

{
"model" : {
" a r c h i t e c t u r e " : " Fu l l Yolo " ,
" input_s ize " : 416 ,
" anchors " : [ 2 . 5 5 , 2 . 0 7 , 3 . 1 0 , 2 . 5 1 , 3 . 5 8 , 2 . 8 6 ,
4 . 2 2 , 3 . 1 9 , 5 . 1 6 , 4 . 0 9 ] ,
"max_box_per_image " : 6 ,
" l a b e l s " : [ " r i ght−hip " , " l e f t−hip " ]
} ,

" t r a i n " : {
" tra in_image_folder " : [ path to image f o l d e r ] ,
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" tra in_annot_folder " : [ path to annotat ion f o l d e r ] ,

" tra in_times " : 10 ,
" pretra ined_weights " : "" ,
" batch_size " : 16 ,
" l ea rn ing_rate " : 1e−4,
"nb_epoch " : 10 ,
"warmup_epochs " : 0 ,

" ob j e c t_sca l e " : 5 . 0 ,
" no_object_scale " : 1 . 0 ,
" coord_scale " : 1 . 0 ,
" c l a s s_s c a l e " : 1 . 0 ,

"saved_weights_name " : " fu l l_yolo_hip . h5 " ,
"debug " : t rue
} ,

" va l i d " : {
" val id_image_folder " : " [ path to image f o l d e r ] " ,
" val id_annot_folder " : " [ path to annotat ion f o l d e r ] " ,

" val id_times " : 1
}
}

As previously mentioned, YOLO v2 is able to detect up to five objects in each
of the 32 cells that the image is split into. However, the configuration file allows to
specify a maximum of detected objects. This parameter does not change the limit
of the YOLO boxes per cell. Instead it selects only the predictions of the highest
confidence, which are then used to calculate the total loss. In our use-case, we are
only interested in detecting up to two objects per image (the left and the right hip).
That said, the model could still detect two left-hips. Therefore, the maximum of
objects per image was set to 6. Because no fine-tuning of the YOLO algorithm was
completed, a test dataset was not required. Finally, anchors were calculated based
on the gen_anchor.py file.

Image Augmentation

As explained earlier, image augmentation is a tool that can be useful when training
object detectors or classifiers with sparse data. The intuition is that small datasets
can in some cases lead to over-fitting, as the model learns to detect unwanted corre-
lations. An example of this could be an x-ray image of a B hip with the tag ’Left’ in
the top right corner. If the model does not train on many different B hips it could
learn that the tag ’Left’ in the top right corner means a B hip, which is certainly not
the correlation that we are looking for. Another example, which is very relevant for
this data-set, is if the training set of a certain category happens to be darker than
the other categories. In that case, the model might learn to associate the brightness
with a certain result. To overcome some of these challenges, it is therefore useful to
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slightly alter the images during training, so that the data in every epoch is not the
same. Here are some examples of techniques that can be used:

• rotate

• noise

• blurring

• sharpening

• contrast normalization

While no academic papers on the impact of image augmentation on the accuracy
for object detection, a few papers examining the effects on classification accuracy
were examined. The literature described that the tuning image augmentation de-
pends on the underlying dataset and problem domain. For instance if the dataset
contains images including a lot of noise, then only a small amount of noise can be
applied without rendering the image useless. The same considerations for classifiers,
should also be made to object detectors. In the papers by Wang [32] and Lemley
[33], the authors examine how a Generative Adversarial Network can be trained to
learn the correct measure of augmentation. Although, an interesting approach, the
implementation of a GAN to support the augmentation is outside the scope of the
thesis and hence visual intuition was used on the tuning instead. To apply augmen-
tation during YOLO-training a library for image augmentation called imgaug was
used. The script was configured to randomly apply the following augmentations to
50 percent of the data inside the batch:

• different kinds of blur

• gaussian noise

• change brightness of images

• change hue and saturation

• improve or worsen the contrast

• sharpen images

Although, the Keras library has a built-in image augmenter, the augmentation
options are limited and mainly include functions for rotations, flipping, etc, which
for obvious reasons are not useful when dealing with object detection of boundary
boxes. To test the augmentation of an image, the same image was applied the
augmenter function six times and compared in figure 60.

47



Figure 60: Image of a hip and five versions of the hip after being applied the augmentation
function. As mentioned, augmentation is only applied 50 percent of the time.

Figure 61: Original
hip

Figure 62: Experiment
1

Figure 63: Experiment
2

Figure 64: Experiment
3

Figure 65: Experiment
4

Figure 66: Experiment
5

As seen from the augmentations in figure 60, the original image is randomly
applied noise, blurring and a change of exposure. The experiment is also a sanity
check to ensure that the important visual features (the hip bone and socket) are
clearly visible on all of the examples. A visual test of the extreme values of the
augmentations was conducted as well.

7.3 YOLO Results

The supervised annotation dataset, consisting of 2,264 left and right hips, was split
into 80 percent training data and 20 validation data. As mentioned, no test was
generated as no hyperparameter-tuning was used. Instead, the approach was to
simply follow the YOLO v2 implementation. Based on the configurations explained,
the model trained for 14 epochs before early stopping. The results were at this point
a mAP (mean average precision) of 1.00 on the validation set, indicating a high
precision when it comes to classification and an IoU above 0.5 for every prediction.
This shows that the model has a high lower-bound prediction of the localization for
all the examples in the validation set. Also, it proves that transfer learning on object
detectors trained on RGB images can be efficient on medical grayscale x-rays that
have been converted to RGB images. By using Tensorboard the following graph was
generated to illustrate the validation error as a function of the number of the epochs
(see figure 67).
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Figure 67: Graph of the YOLO validation loss as a function of epochs.

One explanation for the high precision obtained is the fact that all the x-ray
images are taken at the same angle, whereas in many object detection datasets the
positioning varies greatly. Also, the model is only required to detect two classes,
which are distinctively different (horizontal opposites). Lastly, it should be noted
that the work we conducted in the annotation process paid off.

Figure 68: Comparing a hip extraction on the validation set from YOLO with the ground
truth. The example shows a very positive result.

Figure 69: Ground truth
hip extraction

Figure 70: Predicted hip
extraction

Given a maximum mAP score of 1.00, the more interesting measure of the ac-
curacy of the model is to examine the IoU of the predicted boundary boxes. By
analysing the accuracy of the training and validation set, it is possible to determine
how well the model generalizes. To examine this, changes were made to the pre-
dict.py code to analyse an entire directory and save the predicted boundary boxes
in a separate script. Further, a script was written to calculate IoU based on the csv
predictions. The changes to the predict.py script recognises if the argument given is
a path for an image or a directory. Therefore, no changes to the original command
are required to initiate the prediction:

python p r ed i c t . py −c c on f i g . j son −w [ path to weight f i l e ]
− i [ path to image f i l e or to d i r e c t o r y ]

Further, since we know that every picture contains a left and a right hip, the
prediction script was updated so that only one detection of the left and right hip
were saved in the csv file. The selection criteria being the detection with highest
predicted confidence for each class.
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Table 5: Average IoU for training and validation dataset. For the YOLO v2 model no test
set was required as no tuning of hyperparameters was conducted

Dataset Average IoU mAP

Training 0.9184 1.00
Validation 0.9286 1.00

The average IoU was computed for both the training and validation dataset, in
which the validation set consisted of 464 hip annotations. As seen in table 5, the
average IoU is over 90 percent for both datasets. In fact, the IoU score is almost
the same showing strong generalization of the model. The IoU results tell us that
the predicted boundary boxes on average cover more than 90 percent of the ground
truth boundary box. This is excellent results. Outliers from the validation set were
analysed individually to detect potential patterns (see figure 71). Interestingly, the
worst predictions by the models are all on the right hip. Also, it seems that the
predictions (in blue) are all a bit larger than the ground truths (in green). However,
even the worst predictions are still quite accurate (above 50 percent), which is a
good sign for the object detector.

Figure 71: IoU outlier prediction from validation set. Green boxes are the ground truths
and blues boxes are the predicted boundary boxes.

Figure 72 Figure 73 Figure 74

Figure 75 Figure 76 Figure 77

Based on the boundary box predictions, the resolution sizes of the hip extractions
were plotted in figure 78 to identify the variance. Most of the observations are in

50



the range of 400x400 pixels and 1000x1000 pixels. This means that almost all of the
images will be re-sized as the pre-trained ResNet model will use a resolution size of
224x224 pixels.

Figure 78: The resolution sizes of the YOLO v2 hip extraction. All the outputs are of
square format.

8 Classification with ResNet

Based on the extracted data from the YOLO algorithm, the next step is to test if
indeed a classifier is able to predict the hip score based on hip extractions. To do
so, we will use pre-trained weights on Imagenet with the ResNet-152 architecture,
as previously explained in the CNN theory chapter. Similar to the implementation
approach of YOLO, an open-sourced ResNet repository was applied. In this case,
the repository was developed by Felix Yu [34]. Similar to the YOLO repository,
the code was implemented so that the training only is performed on the last fully
connected layer also known as fine-tuning.

Table 6: ResNet Repository Description

Script Title Description
johan_resnet_152.py ResNet architecture, training and pre-

dictions
load_hip.py dataset generator for balanced and un-

balanced training sets
scale_layer.py function for learning the sets of weights

and biases

8.1 Experiment Details

The goals of the classification experiments are to answer the following:

• Can transfer learning on RGB images be successfully applied to HD classifi-
cation on grayscale images converted to RGB.

• Does feature extraction with YOLO improve accuracy of classification as op-
posed to using the entire x-ray as input for the classifier.
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• Are there certain hip scores that the model has difficulties distinguishing be-
tween.

• Is it possible to partially overcome over-fitting, given the limited data size, by
adjusting the hyper-parameters.

• Does an unbalanced dataset with adjusted class weights perform better than
a balanced dataset.

To examine this, three separate datasets were generated. Since the dataset of
hip extractions were generally quite unbalanced, additional instances were created
in which the left hips of score ’D’ and ’E’, were flipped horizontally to generate a
more balanced dataset. The datasets are as follows:

1. Full x-ray images of 416x416 resolution divided into folders according to the
hip final hip score. See class distribution below:

• A: 7989 instances

• B: 2002 instances

• C: 1350 instances

• D: 873 instances

• E: 333 instances

2. Right hip extractions (with some flipped left hips for class D and E) of various
resolutions divided into folders corresponding to the grade of the hip. See class
distribution below:

• A: 2988 instances

• B: 1766 instances

• C: 1026 instances

• D: 1132 instances

• E: 492 instances

3. Left and right hip extractions of various resolutions divided into two separate
folders (A, B, C) and (D, E) to generate a binary dataset of "approved" and
"not approved" evaluations. See class distribution below:

• Approved (A, B, C): 3955 instances

• Not approved (D, E): 1622 instances

For the experiments on both five class and binary classification, a script, hip_load.py,
was written to load balanced and unbalanced datasets, and ensuring that the test
sets for classification of similar experiments were the same. When conducting the
experiments the test set was balanced, so that every class was equally represented.
Given that I had to pay for resources on AWS, only a limited amount of experiments
were conducted. Below is a list of the total experiments with ResNet-152 on 5-class
classification, binary individual hip classification and 5-class full hip classification:
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• 5-class individual hip classification

– Experiment 1: Baseline results trained on balanced dataset

– Experiment 2: Adjusted learning rate

– Experiment 3: Adjusted batch size

– Experiment 4: Training on unbalanced dataset

• Full hip classification

– Experiment 5: Training on balanced dataset

After training models to classify the 5 hip scores, ranging from A to E, the
dataset was transformed to solely distinguish between sets of [A, B, C] and [D,
E]. As a simplification, the two sets were denoted "approved" and "not approved",
although the actual threshold depends on the canine breed.

• Binary individual hip classification

– Experiment 6: Training on unbalanced dataset

For all the experiments conducted with a balanced dataset, the least represented
class set the baseline for the number of instances per class. All of the experiments
are a split into 80 percent training data, 10 percent validation data and 10 percent
test data.

Experiment 1: Baseline ResNet Model

Table 7: Experiment 1: Hyper parameters

Learning rate Epochs Batch size Optimizer Class weights

0.001 8 20 SGD none

Figure 79: Experiment 1: Model ac-
curacy as a function of the number of
epochs

Figure 80: Experiment 1: Model loss as
a function of the number of epochs
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As seen in figure 79, the model is over-fitting as accuracy on training data im-
proves continuously, and peaks around 93 percent, while the accuracy of the vali-
dation hovers around 53 percent after the 2nd epoch. In the classification report
(table 8), the average accuracy on the test data is 55 percent, which compared
with the baseline accuracy of 20 percent, shows that the model is able to predict
better than random guessing, yet still has difficulties with distinguishing between
certain classes. One reason for this could be that learned features from the trained
weights on ImageNet does not generalize themselves well to distinguishing between
the classes. After all, in our experiments, we only perform fine-tuning on the last
fully connected layer. Another explanation is that we have not defined the hyper-
parameters optimally. From the classification report in table 8, we observe that the
recall for class C is an outlier at 27 percent. This is a clue to which classes that the
model is not able to define well.

Table 8: Experiment 1 classification report of the test data

Class Precision Recall F1-score Support

A 0.60 0.55 0.57 51
B 0.47 0.41 0.44 51
C 0.45 0.27 0.34 51
D 0.44 0.76 0.56 51
E 0.79 0.67 0.72 51
avg / total 0.55 0.53 0.53 255

In order to better identify which classes the model is not able to generalize well,
we implemented a confusion matrix based on the results on the test dataset (see fig-
ure 81). In the confusion matrix, it is possible to see where the miss-classifications
occur. Ideally, a confusion matrix, with color-intensity reflecting the number of pre-
dictions, shows a clear diagonal line from the top-left corner to the bottom-right
corner.

In the classification report in table 8, we notice that the model is relatively stronger
at predicting E, D and A hips compared to predicting B and C hips. However, we
do not know which classes the model confuses the predictions with. In the confusion
matrix, however, we can see that the model is more likely to confuse a C hip with a
D hip. Given the dataset size, it is possible that the model has not learned to detect
the slight nuances required for those classes. One positive signal of the confusion
matrix is that when the model predicts wrong it is more likely to guess neighbouring
classes as opposed to more distant classes (see confusion matrix 81). For instance,
the model does not predict any As as Es or vice versa.
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Figure 81: Experiment 1: Baseline model - Confusion Matrix from the test data

To limit the amount of over-fitting, the next experiment was conducted with a
learning rate of one order of magnitude lower. The reason why a smaller a learning
rate can decrease over-fitting is due to the fact that the weights are updated by a
smaller factor to fit each batch, which can avoid local minima.

Experiment 2: Adjusted learning rate

Table 9: Experiment 2: Training parameters

Learning rate Epochs Batch size Optimizer Class weights

0.0001 8 20 SGD none

Figure 82: Experiment 2: Adjusted
learning rate - Model accuracy as a func-
tion of the number of epochs

Figure 83: Experiment 2: Adjusted
learning rate - Model loss as a function
of the number of epochs

With the adjusted learning rate, the training, as seen in figure 82 is smoother and
the accuracy improvements are slower, as expected, when compared to the previous

55



experiment in figure 79. It is worth noticing that the curve for both training and
validation accuracy is upward trending until the last epoch, signalling that the model
potentially could learn more from further training on more epochs. As seen in the
classification report 10, the results of experiment 2 are worse across all average
statistics when compared to experiment 1.

Table 10: Experiment 2: Adjusted learning rate - Classification report

Class Precision Recall F1-score Support

A 0.45 0.39 0.42 51
B 0.24 0.24 0.37 51
C 0.32 0.43 0.37 51
D 0.50 0.43 0.46 51
E 0.67 0.65 0.66 51
avg / total 0.44 0.43 0.43 255

The worse results are also evident in the confusion matrix (see figure 84). Here,
we see that the model is now sometimes predicting an A as E and vice versa.

Figure 84: Experiment 2: Adjusted learning rate - Confusion Matrix from the test data

Based on these results, even though training perhaps should have been set up
with more epochs, the adjusted learning rate is not used in the following experiments.
Instead, as another strategy to avoid over-fitting, the batch size was examined. In
the paper, ’On Large-Batch Training for Deep Learning: Generalization Gap and
Sharp Minima’ [35], the authors argue that large batch size can fail to generalize,
while small batch sizes can be too noisy. In the paper, the general batch size
is considered to be between 32 to 512, from which the authors suggest a larger
batch size. However, in the paper ’Revisiting Small Batch Training for Deep Neural
Networks’ [36], the authors argue that on datasets such as CIFAR-10 best results
are achieved with batch sizes between 2 and 32. Given the inconclusiveness of the
papers, a smaller batch size was tested to see if better results could be obtained this
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way. Similar to the adjusted learning rate, a smaller batch size would decrease the
total loss computed from every batch.

Experiment 3: Adjusting batch size

Table 11: Experiment 3: Training parameters

Learning rate Epochs Batch size Optimizer Class weights

0.001 8 10 SGD none

Figure 85: Experiment 3: Adjusted batch
size - Model accuracy as a function of the
number of epochs.

Figure 86: Experiment 3: Adjusted batch
size - Model loss as a function of the
number of epochs.

In figure 85, training accuracy plateaus at 8 epochs, while validation accuracy is
a bit unstable and falls from the peak at epoch 4, slightly above 63 percent, to
just below 60 percent at epoch 8. One way of understanding the development, after
epoch 4, is that the model keeps optimising for features that improve the accuracy of
the training samples, but does not generalize well to the domain of HD. The results
from the test set are slightly better than the best results from the validation data
(see table 12). The average precision rate is at 70 percent and the F1 score is at
0.68, which is a 15 percent increase in both statistics from the baseline experiment,
which was the previous best results. One clear outlier from the classification report
is the recall value for class B. A recall of 22 percent tells us that the model does not
predict B for a lot of the actual Bs in the test data.

Table 12: Experiment 3: Adjusted batch size - classification report on test data

Class Precision Recall F1-score Support

A 0.50 0.86 0.63 51
B 0.69 0.22 0.33 51
C 0.63 0.61 0.62 51
D 0.80 0.76 0.78 51
E 0.87 0.90 0.88 51
avg / total 0.70 0.67 0.65 255
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The results from the confusion matrix, in figure 87, also show strong classification
performance for every class except B just as the classification report in table 12
revealed. In fact, the model is more than twice as likely to predict a B as A.

Figure 87: Experiment 3: Adjusted batch size - Confusion Matrix from the test data

Overall, 70 percent average precision shows promising results for a five-class
classification. Especially, given that only 492 instances were used per class and
divided into train, validation and test data. In the following experiments, we will
test if better results can be obtained by training on a larger unbalanced dataset, but
adjusting the weights of the classes for the loss function.

Experiment 4: Unbalanced dataset

Table 13: Experiment 4: Training parameters

Learning rate Epochs Batch size Optimizer Class weights

0.001 8 10 SGD yes

For this experiment, rather than balancing the number of instances across all classes,
all instances are used in training. The size of the validation and test are the same
as in previous experiments. However, to avoid the model from simply guessing the
over-represented classes during training, the classes are weighted in the loss function
in relation to their representation in the entire dataset.

c lass_weight = {0 : 1 . 0 , 1 : 1 . 7 , 2 : 2 . 9 , 3 : 2 . 6 , 4 :6}

Class A, which equates to 0 in the dictionary, is over-represented and hence
when the class is not predicted correctly the loss is computed with a factor of 1.
However, for the other classes that are under-represented in relation to class A, the
loss is multiplied by the factor based on the inverse ratio to class A. Using the class
weights and unbalanced training set, the following training graphs were generated
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(see figure 88 and 89). The results show an accuracy of 70 percent on the validation
set, which is the highest so far. Also, we notice that the validation loss stabilizes
after the 4th epoch.

Figure 88: Experiment 4: Unbalanced
dataset - Model accuracy as a function
of the number of epochs.

Figure 89: Experiment 4: Unbalanced
dataset - Model loss as a function of the
number of epochs.

When analysing the test data results in the classification report 14, we notice that
the average results are slightly better than in experiment 3, which was the previous
best results. More noticeably, the statistics of the test set in the classification report
with the unbalanced dataset (see table 14) does not include as many outliers. For
instance, the lowest recall is at 57 percent with the unbalanced dataset, compared
to 22 percent with the balanced dataset.

Table 14: Experiment 4: Unbalanced data - classification report on test data

Class Precision Recall f1-score Support
A 0.77 0.65 0.70 51
B 0.51 0.67 0.58 51
C 0.69 0.57 0.62 51
D 0.80 0.73 0.76 51
E 0.84 0.94 0.89 51
avg / total 0.72 0.71 0.71 255

The balanced predictive power of the unbalanced dataset is also evident in the
confusion matrix in figure 90, which has a clear diagonal line and very few miss
predictions with far-off neighbours. It is interesting to note that the two most
accurate classes are D and E, in which E is significantly more accurate. On the
other hand, the model has difficulties with separating between class B and C (see
figure 90) which was discussed with Hald Nielsen, who was not surprised by those
results. During the conversation, Hald Nielsen mentioned that she would find class
B and C more challenging to evaluate and, hence, in some cases would ask for
a second opinion. Given less well-defined evaluation rules for class B and C, it
is understandable that the model has a lower predictive power as the supervised
dataset might not reflect clear patterns. Although, the weights have been balanced
in respect to the class representation, further fine-tuning could be tested by lowering
the weight for class E and to examine the results.

59



Figure 90: Experiment 4: Unbalanced dataset - Confusion Matrix from the test data

In order to determine if the effort of building an object detector for hip classi-
fication, and thereby reducing the amount of noise in the input is worthwhile, the
next experiment will determine if a model is able to classify the final hip score (the
worst of the two hips), based on the full x-ray image.

Experiment 5: Classification of full x-ray image

Table 15: Experiment 5: Training parameters

Learning rate Epochs Batch size Optimizer Class weights

0.001 8 10 SGD none

From the graphs in figure 91, it can be concluded that training the neural network
with the full x-ray image indeed is not very promising. In fact, the validation
accuracy ends at around 30 percent, which only is slightly better than random
guessing and the worst result so far. Because we use the entire x-ray images it
is not possible to generate extra data by flipping the individual hips. Therefore,
the dataset is smaller than in the previous experiments, which also could impact
performance.
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Figure 91: Experiment 5: Full size x-
ray - Model accuracy as a function of the
number of epochs.

Figure 92: Experiment 5: Full size x-ray
- Model loss as a function of the number
of epochs.

The results of the test set in the classification report (see table 16) are sig-
nificantly above the validation results. Given this variance and the fact that the
validation and test set are quite small, it is more likely the true accuracy lies in
between the results of the two datasets.

Table 16: Experiment 5: Full size x-ray - classification report on test data

Class Precession Recall f1-score Support
A 0.40 0.59 0.48 34
B 0.53 0.29 0.38 34
C 0.30 0.26 0.28 34
D 0.54 0.44 0.48 34
E 0.51 0.65 0.47 34
avg / total 0.45 0.45 0.44 170

Figure 93: Experiment 5: Full size x-rays - Confusion Matrix from the test data
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As seen in figure 93, the model is not as good at separating classes that otherwise
are from the opposite sides of the spectrum. Both the confusion matrix in figure 93
and classification report in table 16 supports the argument that using the full x-ray
images, given the dataset size, will not yield strong results. As we have seen so far
the models have in general had a difficulty with learning to categorize class B and
C. For the next experiment, we will train a model on a binary data set. Given that
the score of A, B, C means approved for a range of breeds (the cut-off is distinct
for every breed), the dataset was split into two binary classes: ’Approved’ and ’not
approved’.

Experiment 6: Binary classification unbalanced dataset

Table 17: Experiment 6: Training parameters

Learning rate Epochs Batch size Optimizer Class weights

0.001 8 10 SGD Yes

Since the best results were achieved with batch size of 10 and an unbalanced dataset
with weighted classes, these learnings will be applied to binary classification as well.
Given the distribution of the dataset, the weights were set to the following:

c lass_weight = {0 : 1 , 1 : 2 . 4 }

As seen in the training graphs 94, the validation and training accuracy ends up
at almost the same accuracy in the end, although there is a major drop during in
validation accuracy at epoch 4. At this epoch, the model improved training accuracy
at the cost validation accuracy.

Figure 94: Experiment 6: Unbalanced bi-
nary dataset - Model accuracy as a func-
tion of the number of epochs

Figure 95: Experiment 6: Unbalanced bi-
nary dataset - Model loss as a function of
the number of epochs

Similar to the validation accuracy in figure 94, the predictions on the test data
performs with a very high accuracy. In the classification report (see table 18), the
average precision, recall and f-1 score are all 96 percent, showing that the model is
highly capable of differentiating between [A, B, C] and [D, E].
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Table 18: Experiment 6: Unbalanced binary dataset - classification report on test data.
Note that the test data set is slightly unbalanced (150 vs. 140).

Class Precision Recall f1-score Support
Approved 0.94 0.97 0.96 150
Not approved 0.97 0.94 0.95 140
avg / total 0.96 0.96 0.96 290

To get a better understanding of the images that are miss-classified, a sensitivity
analysis was conducted. The idea is to assess how confident the model is when it is
wrong. Ideally, with binary classification, the confidence is as close to 50 percent as
possible for the miss-classification. If this is the case it is possible to build a model
that correctly flags images that need human attention. Three miss-classifications
are illustrated below (the difference in exposure should be overlooked - this is due to
using two different python image libraries). For every miss-classification the original
full size image is illustrated next to it. As mentioned in the dataset description
section, some x-ray scans have not been conducted with a correct orientation at
the clinic and hence right and left are switched. In those cases, it could make it
challenging for the model to predict correctly if the hips have different scores.

Figure 96: Confidence for this miss-classification was 84 percent. As seen in the full image,
the x-ray scan is oriented correctly (see ’L’)

Figure 97: X-ray of miss-classified
hip from experiment 6

Figure 98: Full x-ray corresponding
to figure 97.
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Figure 99: Confidence for this miss-classification was 76 percent. As seen, the orientation
of the x-ray scan is wrong (see ’R’). Further, the images are very dark.

Figure 100: X-ray of miss-classified
hip from experiment 6

Figure 101: Full x-ray corresponding
to figure 100.

Given that the hips are oriented incorrectly in figure 100, it was not possible for
the model to predict on the correct mapping of input and output. However, upon
opening the DKK evaluations, it was discovered that both hips for this observation
received the same score. Hence, this argument is discarded as a possible reason.
Therefore, it is likely that the darkness of the image is the reason for the prediction
difficulties.

Figure 102: Confidence for this miss-classification was 99 percent. The orientation of the
image is correct.

Figure 103: X-ray of miss-classified
hip from experiment 6

Figure 104: Full x-ray corresponding
to figure 103.

This miss-classification is more concerning as the confidence is very high (99
percent), yet the prediction is wrong, despite not having any immediate problems
with the image data.
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8.2 Summary of Experiments

In table 19 is a summary of the classification reports from the conducted exper-
iments. All statistics represent the averages from the hip score results of all the
classes.

Table 19: Summary of the classification reports of the conducted experiments

Experiment Precision Recall f1-score Batch Size Learning Rate Weights

#1 - Baseline 0.55 0.53 0.53 20 0.001 No
#2 - Learning rate 0.44 0.43 0.43 20 0.0001 No
#3 - Batch size 0.70 0.67 0.65 10 0.001 No
#4 - Unbalanced 0.72 0.71 0.71 10 0.001 Yes
#5 - Full hip images 0.45 0.45 0.44 10 0.001 No
#6 - Binary 0.96 0.96 0.96 10 0.001 Yes

As seen from the summary table 19, the best performing experiment for five-class
classification was conducted with a batch size of 10 and with an unbalanced training
set (experiment 4). The fact that the unbalanced training set helped improve the
precision by 2 percent (compared to experiment 3), shows that more data is able
to improve the accuracy of the model. Other experiments such as further fine-
tuning and using ensemble models could improve the accuracy further. That said,
as the data-size of the experiments are very modest, compared to other medical
experiments of observations exceeding 100.000 instances, a larger dataset is certainly
worth gathering. With a sufficiently large, balanced dataset a model could be trained
from scratch. During conversations with McEvoy and Proschowsky, it has become
clear that other kennel clubs and researchers are interested in participating in a
broader data-collection. At the current data-size, the model is very capable of
distinguishing between [A, B, C] and [D, E] as binary classification reaches 96 percent
precision.

9 Conclusions

Based on the work on hip dysplasia with CNNs, the following can be concluded:

• Transfer learning with CNN models trained on RGB image datasets, such as
ImageNet, can be successfully applied to a small dataset of grayscale medical
x-ray images of hip dysplasia.

• Within object detection, an average IoU of 92 percent and mAP of 100 percent
on the test data (consisting of 464 examples) was achieved by implementing
YOLO v2 on a dataset of 2,264 annotated hips.

• Within classification, promising results were generated based on the hip ex-
traction from the object detector using a ResNet-152 model pre-trained on
ImageNet. Using an unbalanced dataset of 7,404 observations, a f1-score of 71
percent was achieved on 5-class classification. Further, on a binary dataset of
5,577 observations, a f1-score of 96 percent was achieved with an unbalanced
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dataset. Given the limited data-sizes, it is likely that better results can be
produced with a larger and more balanced dataset.

• Using an object detector to extract features, and thereby excluding noise, was
an efficient strategy to clean the data for the classifier. When using the entire
x-ray image as input only a 30 percent validation precision accuracy and 44
percent precision test accuracy was achieved.

• Some classes were more difficult to distinguish between for the classifier. In
particular, the experiments showed that the model had difficulties generalizing
rules for class B and C in the confusion matrices. From conversations with the
evaluator, the problem of generalizing these classes could arise from the fact
that the classification rules for B and C are less well-defined. Thus, given the
current supervised dataset, there might be an upper-limit for the accuracy of
these classes. This is also reflected in the increase of accuracy in the f1-score
from 72 percent to 96 percent once the dataset is divided into a binary set of
[A, B, C] and [D, E].

9.1 Future Research

Based on the fact that a prototype classifier has reached promising results on a
limited dataset from Denmark, here are some areas that could be interesting to
further examine in the domain of hip dysplasia and CNNs:

• Collect more data from other national kennel clubs. This has already been
discussed and the kennel club from Finland has shown interest. By gathering
a larger and more balanced data-set it would be possible to train a model from
scratch. For such a model, national bias could be tested by making one of the
inputs correspond to the nationality of the rating. In addition, the impact of
transfer learning could be measured.

• Conduct a study among multiple evaluators to examine to which degree they
agree on evaluations. The results would be a base-line from which the results
of a CNN would be compared to.

• Collect a labelled dataset consisting of majority voting from multiple evalua-
tors and test if better results can be produced this way.

• Since ensemble models achieve the highest accuracies in most data science
competitions [27], an ensemble model could be tested based on different archi-
tectures (VGG, Inception, etc.) for further improvements in accuracy.
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